If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t=-16t^2+1400
We move all terms to the left:
t-(-16t^2+1400)=0
We get rid of parentheses
16t^2+t-1400=0
a = 16; b = 1; c = -1400;
Δ = b2-4ac
Δ = 12-4·16·(-1400)
Δ = 89601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{89601}}{2*16}=\frac{-1-\sqrt{89601}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{89601}}{2*16}=\frac{-1+\sqrt{89601}}{32} $
| 5l+9=34 | | 103+-6x=49 | | (X^3+4x^2-25x-100)=0 | | 5^x-3-4=21 | | 84-1x=80 | | x=18.75+0.25x | | 43+2x=57 | | 4-x+x-3-9+4x=6 | | 85+-1x=79 | | 29+5x=39 | | 111-10x=61 | | (x-3)/(x+4)=0 | | ×+y=2 | | (8+x)(4x+9)=0 | | -3x+70=55 | | 18x+31=19x-36 | | 26+0x=26 | | 4x-28=84 | | 3/4z=1/4z−3+5 | | 5x+24=3x+38 | | 3x-12=9-4× | | 6×+5y=43 | | 2(x+2)-7=13 | | (3x+2)(x^2-5x-36)=0 | | 5x+6-3x=-4 | | 8-6y-3y=-1 | | 8x+5-3x-x=4x+2x+14-5x | | 1=5/12+x | | k+25=40 | | 3x+4+2x=41 | | 7+4p=3+4+4p | | –2n+21=–n |